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INTRODUCTION

The International Space Station (ISS) has the highest voltage solar arrays ever flown in Low
Earth Orbit (LEO, see figure 1). The ISS power system (and structure) ground is at the negative
end of the 160 V solar arrays. Due to plasma current collection balance that must be maintained
in LEQ, itis possible for a spacecraft to charge negative of the ambient plasma by up to its entire
solar array voltage (-160 V for ISS, see reference 1).
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Figure 2. A model prediction of ISS “floating potentials.”

NASA/CP—2002-211831 154



In 1990 and 1991, an Electrical Grounding Tiger Team was instituted to determine the effects on
ISS of its 160 V negative ground system. The Tiger Team predicted that ISS would “float” at
—140 V (see figure 2), and this would cause its anodized aluminum surfaces to undergo dielectric
breakdown, ruining their thermal properties. The best estimate of the time to remove enough
anodize to violate temperature constraints was determined to be two years (ref. 2). Because of
this failure mechanism, in 1991, the Electrical Grounding Tiger Team recommended that the ISS
potential be controlled by incorporating a Hollow Cathode Plasma Contactor to ground it to the
ambient plasma (ref. 3). Plasma Contacting Units (PCUs) were baselined, constructed, and made
ready to fly by ISS mission 3A, and would be activated by mission 4A, when the high voltage
solar arrays would be launched and turned on (see figure 3).

Figure 3. One of the hollow cathodesused on the ISS PCUs,
undergoing ground testing in a GRC plasma chamber.

RECENT DEVELOPMENTS

In the meantime, the phenomenon of sustained arcing was discovered (by partial destruction on
orbit of some SS/Loral solar arrays, see ref. 4). Sustained arcing occurs when an arc into the
space plasma transitions into an arc between spacecraft surfaces that can be powered in a
sustained manner by the spacecraft power system. Like the arc in a welding torch, one such
sustained arc can lead to immense damage. The prospect of this new type of catastrophic
arcing, combined with acceptance testing difficulties with the PCUs in early 2000, led to a re-
examination of the criticality of PCU operation. After the author presented talks at the Johnson
Space Center (JSC) at the invitation of the Independent Assessment Office (ref. 5), a PCU Tiger
Team was set up to find answers before flight 4A in December, 2000.

EO plasma.

Figure 4. A sustained arc on a solar array in a simulated

NASA/CP—2002-211831 155



The PCU Tiger Team results were surprising. Although sustained arcing was not verified in
testing, it was found that the arc threshold voltage for materials on the Extravehicular Mobility Unit
(EMU, or spacesuit) was less than -70 V (see ref. 6). A safety rule now requires that the EMU
voltage be held less than -40 V from the plasma. A “sneak circuit” analysis, performed by
Hamilton Standard, the EMU manufacturer, found that the astronaut would be in the path to
ground of arc currents on his suit through his tether to ISS. The capacitance discharged in an arc
would be >1000 uF, leading possibly to arc energies of > 10 Joules. Lethal arc currents of > 1 A
were predicted in an astronaut’s body.

Suddenly, arcing on ISS became a catastrophic hazard to the astronauts, requiring two fault
tolerance (3 independent controls) during EVAs (extravehicular activities, or space walks).
Testing showed that both PCUs could be operated simultaneously, giving two controls.

The third control would have to come from passive techniques — shunting the arrays or pointing
them into their own wakes, so they couldn’t collect charging currents.

Passive potential control techniques would have to be verified on orbit, requiring measurement of
the ISS floating potential. A floating potential probe (FPP) would have to be implemented on 1SS
before flight 4A. Amazingly, the FPP (based on plasma probes flown on STS-62, see fig. 5) was
designed, constructed, qualified, integrated, and flown in only 6 months (June-November, 2000).
On 4A, it was installed atop the ISS truss structure by astronauts Tanner and Noriega (fig. 7). On
December 8, 2000, FPP started measuring ISS potentials and parameters of the ambient plasma.

Figure 5. The FPP at Cape Canaveral, prior to launch.
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FPP RESULTS

FPP showed that shunting and/or pointing the arrays even a little into their wakes were valid EVA
shock hazard controls. FPP also showed that even with the arrays inactive, the 1SS floating
potential can vary by 15 volts or more during an orbit. This is due to electron collection by wires
on the solar array masts (fig. 6). vxB.l is the amount of charging caused by the passive electron
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collection. This vxB charging must be added to real solar array charging for various places on the
ISS structure to find the potential with respect to the surrounding ambient plasma.

Figure 7. FPP on orbit. Thewo plama diagnostic spheres are near the picture center.

FPP tests done outside EVA periods with the arrays fully unshunted and the PCUs purposely
turned off showed that both solar arrays now on ISS together only charge it about -25 volts, not
the —140 volts predicted (see fig. 8). Even counting a maximum of 15 volts of vxB charging, this
amounts to only —40 V. Why were the predictions inadequate? The two reasons:
1.The solar arrays collect much less electron current from the plasma than expected from
the previous ground and flight-test experiments.
2. The ISS structure has about 10 m? of extra, exposed grounded conductor in contact
with the plasma, which collects ions and reduces ISS charging.
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Figure 8. FPP measurements (blue) and model fits (other colors) for April 11, 2001.
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ISS solar array electron collection was expected to be somewhere between the results found
from the SAMPIE and PASP Plus flight experiments (1994, ref. 7). On ISS, the solar arrays
collect even less current than the least amount found in those two flight tests. Although ISS is
advertised to be completely covered with insulating material (thermal blankets or anodized
aluminum) bare stainless steel grounded fasteners are located all over ISS structure, and these
act to collect ions from the ambient plasma, minimizing negative charging.

NEW FINDINGS ABOUT PLASMA DEPENDENCES

ISS solar array electron collection and ISS charging have been found from FPP measurements to
be strongly inversely related to the ambient electron temperature. An empirical ISS charging
relationship (the Ferguson-Morton relation, ref. 8) has been found from FPP data to be:

V=269N,%"e T,

where N is the electron density (m'3), and T, is the electron temperature (eV). This surprising
relation says that ISS will charge more negative when the electron density is high (a weak
dependence) but the electron temperature is low (a strong dependence). Electron temperatures
are lowest at dawn.

POSSIBLE FUTURE 1SS CHARGING PROBLEMS

On future ISS missions (> 12A, November 2002) more solar arrays will be added, but it is unlikely
that the amount of added ion collecting truss structure will be able to keep up. The new main ISS
truss will maximize vxB charging. From one end of the truss to the other, vxB.l itself amounts to
almost 40 V (the maximum the safety rule allows). Also, FPP has stopped working, and it may
not be replaced by 12A. When changing arrays, or when replacing PCUs, one PCU must be
inactivated. As time goes on, the ionospheric plasma temperature will decrease, as we get closer
to solar minimum again. All of these circumstances make catastrophic arcing more probable.
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